Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories
نویسندگان
چکیده
The interplay rich between algebraic geometry and string and gauge theories has recently been immensely aided by advances in computational algebra. However, these symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. Its so-called ’embarrassing parallelizability’ allows us to solve many problems and extract physical information which elude the symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.
منابع مشابه
DEVELOPMENT IN STRING THEORY
The string theory is a fast moving subject, both physics wise and in the respect of mathematics. In order to keep up with the discipline it is important to move with new ideas which are being stressed. Here I wish to give extracts from new papers of ideas which I have recently found interesting. There are six papers which are involved: I ."Strings formulated directly in 4 dimensions " A. N...
متن کاملNumerical Elimination and Moduli Space of Vacua
We propose a new computational method to understand the vacuum moduli space of (supersymmetric) field theories. By combining numerical algebraic geometry (NAG) and elimination theory, we develop a powerful, efficient, and parallelizable algorithm to extract important information such as the dimension, branch structure, Hilbert series and subsequent operator counting, as well as variation accord...
متن کاملOn Algebraic Singularities, Finite Graphs and D-Brane Gauge Theories: A String Theoretic Perspective
In this writing we shall address certain beautiful inter-relations between the construction of 4-dimensional supersymmetric gauge theories and resolution of algebraic singularities, from the perspective of String Theory. We review in some detail the requisite background in both the mathematics, such as orbifolds, symplectic quotients and quiver representations, as well as the physics, such as g...
متن کاملNoncommutative Geometry and Spacetime Gauge Symmetries of String Theory
We illustrate the various ways in which the algebraic framework of noncommutative geometry naturally captures the short-distance spacetime properties of string theory. We describe the noncommutative spacetime constructed from a vertex operator algebra and show that its algebraic properties bear a striking resemblence to some structures appearing in M Theory, such as the noncommutative torus. We...
متن کاملExact Solutions of Exceptional Gauge Theories from Toric Geometry
We derive four dimensional gauge theories with exceptional groups F4, E8, E7, and E7 with matter, by starting from the duality between the heterotic string on K3 and Ftheory on a elliptically fibered Calabi-Yau 3-fold. This configuration is compactified to four dimensions on a torus, and by employing toric geometry, we compute the type IIB mirrors of the Calabi-Yaus of the type IIA string theor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012